Thoughts
- Dynamic Programming
dp[i][j]
表示word1的第i个字符和word2的第j个字符适配的edit distance是多少
- 则有动态规划方程:
\[dp[i][j] =
\begin{cases}
Math.min(dp[i-1][j-1]+1,dp[i-1][j]+1,dp[i][j-1]+1) & \text{word1[i] != word2[j]}
\\
Math.min(dp[i-1][j-1],dp[i-1][j]+1,dp[i][j-1]+1) & \text{word1[i] == word2[j]}
\end{cases}\]
public int minDistance(String word1, String word2) {
int[][]dp = new int[word1.length()+1][word2.length()+1];
// init boundary
for(int i = 0; i < word1.length()+1; i ++) {
dp[i][0] = i;
}
for(int i = 0; i < word2.length()+1; i ++) {
dp[0][i] = i;
}
// dp
for(int i = 0; i < word1.length(); i ++) {
for(int j = 0; j < word2.length(); j++) {
int x = word1.charAt(i) == word2.charAt(j) ? 0 : 1;
dp[i+1][j+1] = Math.min(dp[i][j] + x,Math.min(dp[i+1][j] + 1,dp[i][j+1] + 1));
}
}
return dp[word1.length()][word2.length()];
}